Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

Results are encouraging

Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial–mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

Anaysis and further testing

Our broad, quantitative assessment of factors secreted by senescent cells revealed a highly complex secretory phenotype. We show here that this phenotype can promote cellular behaviors associated with malignancy, and suggest that cells that acquire mutations such as those that inactivate p53 and/or activate RAS functions can be particularly malignant owing to the paracrine activities of the SASP. It is very likely, though, that additional consequences of the SASP will be uncovered as the many SASP components are tested for specific activities.

A positive result

Cells with damaged DNA are at risk of becoming cancerous tumors. Although “cellular senescence” can suppress tumor formation from damaged cells by blocking the cell division that underlies cancer growth, it has also been implicated in promoting cancer and other age-related diseases. To understand how this might happen, we measured proteins that senescent human cells secrete into their local environment and found many factors associated with inflammation and cancer development. Different types of cells secrete a common set of proteins when they senesce. This senescence-associated secretory phenotype (SASP) occurs not only in cultured cells, but also in vivo in response to DNA-damaging chemotherapy. Normal cells that acquire a highly active mutant version of the RAS protein, which is known to contribute to tumor growth, undergo cellular senescence, and develop a very intense SASP, with higher levels of proteins secreted. Likewise, the SASP is more intense when cells lose the functions of the tumor suppressor p53. Senescent cells promote the growth and aggressiveness of nearby precancerous or cancer cells, and cells with a more intense SASP do so more efficiently. Our findings support the idea that cellular senescence can be both beneficial, in preventing damaged cells from dividing, and deleterious, by having effects on neighboring cells; this balance of effects is predicted by an evolutionary theory of aging.

Full Text: “Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor.”

PLoS Biology.Campisi J, et al. (2008).

Share this post